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E X I S T E N C E  O F  S O L U T I O N S  O F  K R A I K O ' S  P R O B L E M  

S. P.  B a u t i n  UDC 533.6 

Three initial-boundary-value problems for the equations of gas dynamics are formulated. Suc- 
cessive solution of these problems yields a solution of Kraiko's problem of the isentropic tran- 
sition of an ideal gas from a homogeneous state of rest to another state of rest with higher or 
lower density. Solutions are constructed for plane, cylindrical, and spherical layers of an ideal 
gas. The existence of locally analytic solutions is proved. 

I n t r o d u c t i o n .  For the plane-symmetric case, Mises [1] considered an example of a compound flow 
of a gas in which transition from a homogeneous state of rest (state 1) to another  state of rest (state 2) is 
performed by means of two centered waves and a constant flow. This flow is produced by the motion of two 
impermeable pistons. It has been proven that  solutions of this type do not exist if one of the pistons remains 
at rest (see [1]). 

Rylov [2] studied the problem of the optimal motion of an impermeable piston that  does maximum 
work under specified constraints on the displacement and the displacement time. For the plane-symmetric 
case, Kraiko [3] obtained numerical results and drew an analogy between the optimal motion of the piston 
and the well-known motion in a two-dimensional supersonic nozzle of maximum thrust.  

Kraiko [4-7] constructed compound plane, cylindrically, and spherically symmetric, unsteady gas flows 
that  describe the isentropic transition of an ideal gas from state 1 to state 2 with higher or lower density 
p (compression wave or rarefaction wave, respectively) and used them, in particular, to describe unlimited 
cumulation of a gas. These flows differ from the configuration considered in [1]. The compound flow config- 
uration in [5, 7] for the shock-free compression of a gas to finite density also differs from the configuration 
considered in [8]. For the compression of a gas to finite density, Sidorov [8] studied a configuration in which 
the characteristics of one family intersect at a point that  lies on the stat ionary boundary of the compressed 
layer and not on the piston. In state 2, the gas density can be constant but  the gas-flow velocity is then 
nonzero and the flow configuration is similar to the one described in [1]. Kraiko [5, 7] considered flows that  
arise when a compressing piston comes to the point from which a centered compression wave propagates. 
In this case, in state 2, the density is constant and the gas velocity is zero. In [4-7], approximate formulas 
were used to resolve singularities in the solution, and construction of the flow "as a whole" was reduced to a 
numerical solution of the equations of gas dynamics by the method of characteristics. We note that  solutions 
of problems of the strong shock-free compression of an ideal gas are unstable with respect to external actions 

on the gas [9]. 
The aim of the present paper is to formulate three initial-boundary-value problems and prove the 

existence of locally analytic solutions of these problems. Successive solution of these problems yields solutions 
of Kraiko's problem for plane (r, = 0), cylindrical (9 = 1), and spherical (L, = 2) layers of an ideal gas. Thus, 
for ~ = 0, 1, and 2, we prove that  a gas mass can be transferred from state 1 to state 2 by a shock-free method 
using an impermeable piston. Also, we discuss the arbitrariness encountered in solving Kraiko's problem and 
the possibility of non-one-dimensional flows in this problem. 
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Fig. 1 

I n i t i a l - B o u n d a r y - V a l u e  P r o b l e m s .  The equations of gas dynamics are invariant with respect to 
a shift in time t and inversions of the gas velocity and time [10]. Therefore, without loss of generality, we 
consider only the case of a rarefaction wave in Kraiko's problem. 

To solve Kraiko's problem, it is necessary to s tudy isentropic flows of an ideal gas (S = So, where S is 
the entropy and So = const > 0). For simplicity, we consider the polytropic equation of state p = A2(S)pZ/ '7 ,  

where p is the pressure and "y -- const > 1. Without  loss of generality, we assume that  A2(So)  = 1. However, 
all the theorems proved below can easily be extended to  the case of a normal gas with an arbi t rary equation 
of s tate  p = p(S ,  p) if the function p(So, p) is analytic in the neighborhood of the examined point p = P0 and 

P(So, P0) > 0, where/9o = const > 0. 
To describe one-dimensional isentropic flows of an ideal polytropic gas in Kraiko's problem, we consider 

the following system of equations for the gas velocity u and the speed of sound c: 

ct + ucz + (~ / -  1)c(uz + u u / x ) / 2  = O, ut + 2ccz/( '7 - 1) + wax = 0 (1.1) 

and the equation for the velocity potential  ffp(t,x) [10]. To describe flow singularities such as centered 
waves, we convert the function �9 to a new unknown function ~(t ,  u) using the Legendre transform �9 = 
- ~  + u x  + (7 - 1)t. The  Jacobian of this transform is given by J = - ~ .  The equation for the function 

has the form 

~ttq2~u - (~t,, - u) 2 + c 2 + ~uc2~,u/~2u = 0. (1.2) 

Here c 2 = ("7 - 1) (% - u-~/2), conversion to the space of physical variables is performed using the formula 
( ~ 1  2,:/2 

x = ~ u ,  w h e r e x = x :  f o r ~ = 0 a n d x =  x i j  f o r v = l  and 2, and t is time. 
i=1 

For system (1.1) and Eq. (1.2), we formulate three initial-boundary-value problems. Let us consider 
a plane, cylindrical, or spherical layer of a homogeneous gas (p =/9o = 1) which at t = 0 is at rest between 
two impermeable walls located at the points O : ( x  = xo) and A ( x  = x . ) .  Without  loss of generality, we set 
x.  = 1. For definiteness, we assume that  the point O: is to the left of the point A (x0 < x . )  but  for ~ = 1 
and ~ = 2, it is strictly to the right of the axis or center of symmetry, respectively (x0 > 0). 

P r o b l e m  1 (of a piston moving out).  Let the wall move out as an impermeable piston. Three 

configurations are possible, depending on how the piston moves. 
We assume tha t  for t ~> 0, the piston moves smoothly starting at the point A (Fig. 1). Its t rajectory 

( A B )  is specified by the equation x = xp(t) [xp(0) = x . ,  Xp(0) = 0, and x~(0) > 0]. Then, for t ~> 0, two flows 
are matched continuously via the sonic characteristic A C  (x = x .  - t) in the region between the motionless 
wall O102 and the piston A B .  The region O : A C  corresponds to a state of rest of the gas (the region SR in 
Fig. 1), and the region B A C  corresponds to a flow, which is uniquely determined [9] from the characteristic 

Cauchy problem for Eq. (1.2): 

�9 ( t ,u)  ~ = o  = ( z .  - t)l(,~ - 1 ) ,  ~ ( t , u )  ~ = 0  = z .  - t;  ( 1 . 3 )  
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�9 = - u)] ( 1 . 4 )  

Here t = ~7(u) is the inverse of the function u = x~v(t). Equations (1.3) represent the condition of continuous 
matching of the solution of problem (1.2)-(1.4) and the solution corresponding to the homogeneous s ta te  of 

rest via the characteristic AC.  Equat ion (1.4) represents the condition of no normal flow through the piston 

A B  for the function k~(t, u). Problem (1.2)-(1.4) is Problem 1. 

T h e o r e m  1. I f  the function t = 77(u ) is analytic in a certain neighborhood of the point u = O, Problem 1 

has a unique analytic solution which is defined in a certain neighborhood of any point (t = t .  and u = 0) such 
that x .  - t .  > O. In this case, J # O. 

The  proof of the Theorem 1 includes two steps. At the first step, it is shown that  Problem 1 is a 
characteristic Cauchy problem of s tandard form [9], and this ensures the existence of an analytic solution in 

a certain neighborhood of the point (t = 0, u = 0). It  is proved that  there exists a neighborhood of the point 
(t -- 0, u = 0) in which J ~ 0. At the second step of the proof, the coefficients of the series tha t  specify 

tile solution of Problem 1 are studied in detail and it is established [9] that  the solution exists in a certain 

neighborhood of the semiaxis u = 0 for t < x .  and J # 0 in this neighborhood. 
Thus,  it has been proven tha t  in the space of independent variables ( t ,x) ,  the problem of a piston 

moving out smoothly from a motionless homogeneous gas has a solution in the class of piecewise-analytic 
functions, and this solution is unique and defined in a certain neighborhood of the sonic characteristic AC.  

Let the piston move out suddenly with a velocity not lower than  the velocity of a gas flow into vacuum: 
x~(0) ~> 2/(~ - 1) (the problem of a gas flow into vacuum [10]). In this case for small t ~> 0. a homogeneous 

s tate  of rest is a t tached via the sonic characteristic A C  to a simple centered Riemann wave [10] for u = 0 
and to a flow similar to a centered wave [9] for u = 1 and 2. This flow is a solution of Problem 1 in which 

the constant t = 0 is used instead of the function t = r/(u). In this case, condition (1.4) takes the form 
�9 ~,(0, u) = 0 and, in the space (t, x), it corresponds to instantaneous removal of the wall from the point A. 

Thus, Theorem 1 is valid for the problem of a gas flow into vacuum, and J ~ 0 in the entire indicated set of 

points, except at the origin: J t=~,=o = O. 

A third possible configuration in Problem 1 is produced by fast (but inadequate to give rise to vacuum) 
motion of an impermeable  piston from the point A: 0 < x~(0) < 2/( 'y - 1). For general spatial flows, it has 

been proven [11, 12] that  if the law of motion of a piston is analytic, a solution of this problem exists in a 
certain neighborhood of the point A, is unique in the class of piecewise-analytic functions, and consists of 
three flows separated by sonic characteristics. One of these flows, located in the region 0 1 AC,  corresponds 

to a homogeneous s tate  of rest. The  second is a generalization of a centered Riemann wave and has a specific 

singularity at the initial time. The  third flow is, in fact, a solution of the problem of the smooth  motion of a 
piston from the specified flow and has no singularities in a certain neighborhood of the point A. Therefore, in 

the third case, an analytic solution is also defined in a certain neighborhood of the characteristic A C  [11, 12]. 
Thus,  for any analytic law of motion of an impermeable  piston from the point A, the solution corre- 

sponding to a rarefaction wave is uniquely determined, is matched continuously via the sonic characteristic A C  
to the solution corresponding to the initial homogeneous s tate  of rest, and is given by analytic functions in 

a certain neighborhood of the point C(t  = to, x = x0), where to = x .  - x0. 
P r o b l e m  2 (of the reflection of a rarefaction wave from a rigid wall). In the solution of Problem 1, 

the gas velocity is strictly lower than  zero at x = x0 and t > to. Therefore, this solution does not satisfy the 
condition of no normal  flow through the wall O102. Hence, in Problem 1, the interaction of the flow with 

the wall O102 results in a new flow which is separated from the former by the sonic characteristic CD from 

the family of characteristics C + (Fig. 1). The  function x --- qa(t) that  defines the characteristic CD  and the 

gas parameters  on this characteristic 

c x=~(t) = co(t), u ~=~(t) = a0(t) (1.5) 

are uniquely determined by solving Problem 1, and they are analytic functions in a certain neighborhood of 

the point t = to. In this case, r  = uo(t) + co(t) and qD(t0) = x0. The  new flow must  satisfy the conditions 
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(1.5) of continuous matching to the solution of Problem 1 via the characteristic CD. At the wall O102, this 
flow must satisfy the condition of no normal flow: 

u x=zo = 0. (1.6) 

Problem (1.1), (1.5), (1.6) is Problem 2. 
T h e o r e m  2. Problem 2 has a unique analytic solution in a certain neighborhood of  the point (t = to, 

X ~ XO).  

To prove Theorem 2, we introduce new independent variables X = x - ~(t) and 7- = t (with Jacobian 
equal to 1) and show that  in these variables, Problem 2 is a characteristic Cauchy problem of s tandard form, 
for which an analog of the Kowalewski theorem is valid [9]. The problem considered is a particular case of 
the problem of the smooth motion of a piston into a gas because at t ime t = to, the piston velocity (which, 
in this case, is zero at the fixed wall O102) coincides with the gas velocity at a point (the point C in our 
case) that  lies on both  the piston and the given sonic characteristic CD. The solution of Problem 2, which, 
according to Theorem 2, is defined only in a certain neighborhood of the point C, should be considered only 
in the region D C E  (Fig. 1). This flow results from the interaction of the initial rarefaction wave (solution 
of Problem 1) with the impermeable wall O102 and is specified by the law of initial motion of the piston 
x = x~(t) and the position of the wall O102, i.e., the initial thickness of the gas layer. The quanti ty x .  - x0 
is a second arbi t rary element in Kraiko's problem. 

P r o b l e m  3. On the wall 0102 ,  we choose a point E with coordinates ( t l ,x0),  where tl  > to (see 
Fig. 1), tha t  lies in the domain of definition of the solution of Problem 2. The point E is the last, third, 
arbi t rary  element in Kraiko's problem. At the chosen point E,  the speed of sound Cl in the solution of 
Problem 2 is uniquely determined: c(tl,  xo) = Cl. Therefore, the gas density pl is also uniquely determined 

at this point E: Pl = c~/(~-1). Thus, the value p = Pl is the last arbi t rary element that,  together with the 
function x ---- Xp(t) and the value, x .  - x0, determines uniquely the solution of Kraiko's problem for the case 

of a rarefaction wave. 
In addition, the choice of the point E determines uniquely the analytic functions x = ~ - ( t )  and 

x = ~+ (t) _ x0 + Cl (t - t l )  and, hence, the trajectories of the sonic characteristic E F  of the family C -  of the 
flow corresponding to the region D C E  (solutions of Problem 2) and the characteristic E G  (straight line) of 
the family C + of the quiescent homogeneous gas with density Pl corresponding to the region 0 2 E G  (Fig. 1). 

Next, one obtains uniquely the analytic functions 

c x = ~ - ( t )  = c ~ ( t ) ,  c ~ ( t l )  = Cl, u x=~-( t )  = uT( t ) ,  u T ( t l )  = 0; (1.7)  

e x=~+(~) = c+l(t) ---- Cl, u x=~+(t) = u+(t) =- O, (1.8) 

which specify, respectively~ the gas parameters on the characteristic E F  of the flow corresponding to the 
region D C E  and the state variables of the quiescent homogeneous gas corresponding to the region 02EG.  

In this case, r : u~ • c~(t) and ~:~(tl) = x0. 
Thus, Problem 3 reduces to the Goursat  problem (1.1), (1.7), (1.8) in the region F E G  (see Fig. 1). 
Because of the nonlinearity of system (1.1), it is impossible to use the results of [13] for semilinear 

systems to prove the existence of a solution of Problem 3. For the interaction of two simple waves in the case 
u = 0, system (1.1) admits exact linearization [10]. These results also cannot be used because, for v = 0, 
the unknown flow in the region F E G  is a simple wave since it is adjacent to a homogeneous state  of rest. 
Probably, the existence of a solution of Problem 3 can be proved by the method used in [14] for conical 

potential  flows tha t  depend on x l / t  and x2/t .  
Below, however, to prove the existence of a solution of Problem 3, we reduce this problem to the 

problem of the decay of a weak discontinuity [15] (see also [16]), for which the corresponding theorems were 
proved for the class of piecewise-analytic functions. Besides the proof of the existence of a solution, this 

approach can be used to s tudy non-one-dimensional solutions. 
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To match the solution of Problem 2 with other solutions, we can consider it only in a certain part  of 
the domain of definition, e.g., in the domain DCEF.  However, as noted above, the solution of Problem 2 is 
defined in a certain neighborhood of the point C. Since the point E is chosen in this domain, there exists a 
neighborhood of this point ~t = { ( t -  t l ) 2 +  ( x -  x0) 2 < : 2 , ,  = const > 0} in which the solution of Problem 2 
is defined by analytic functions. Hence, the characteristic F E  can be extended for x ~< x0. We consider the 
characteristic FF1 (Fig. 2), on which the corresponding gas-dynamic parameters of the solution of Problem 2 
are also given, and its par t  EF1. It is sufficient to prove the existence of an analytic solution of Problem 3 
in a certain neighborhood of the point E in the case where the curves EF1 and EG (Fig. 2) are taken as 
the intersecting characteristics that  provide the corresponding initial data. The  solution of this problem in 
the region F E G  is a constituent of the solution of Kraiko's problem. In this approach, solving Problem 3 is 
equivalent to solving the following problem of the decay of a weak discontinuity. 

We assume that for t = tl and x ~< x0 (see Fig. 2) the gas parameters are 

U(t,x) t=t, = U~(x) ,  (1.9) 

and for t = tl  and x ~> x0 they are 

u( t , x )  = Uo (X); (1.1o) 

they satisfy the continuity condition at the point x = x0: 

vs  = U o(Xo). 

In Eqs. (1.9) and (1.10), we have U -- {c,u}. The problem is to find the distribution of the gas-dynamic 

parameters  for t ~> tl.  
T h e o r e m  3. If  functions (1.9) and (1.10) are analytic in a certain neighborhood of the point x = x0, 

the problem of the decay of a weak discontinuity for t >~ tl has a unique piecewise-analytic solution in a certain 
neighborhood of the point (t = t l ,  x = x0). 

Theorem 3 is a particular case of the theorem proved in [15]. In the proof of the above-stated theorem 
using the initial data  (1.9) and (1.10) and Kowalewski's theorem, it is shown that  in a certain neighborhood 
of the point E there exist two background flows given by the analytic functions Uo(t, x) and U+(t, x). Let 
the sonic characteristics C -  and C + (curves EF1 and EG, respectively) be given by the analytic functions 
x = ~ - ( t )  and x = p+(t)  [~- ( t l )  = F+( t l )  = x0]. The  gas-dynamic parameters of the background flows on 
these characteristics are also analytic functions and satisfy the continuity condition at the point E: 

U~ (t'x) x=~-(t) = U~-(t), U+(t,x) x=~+(t) = Ul+(t)' U~-(tl) = Ul+(tl). (1.11) 

If, as the background flows, we use the solution of Problem 2 and the solution corresponding to the 
quiescent homogeneous gas (p = Pl), respectively, then the right sides of Eqs. (1.11) coincide with the right 
sides of Eqs. (1.7) and (1.8). Therefore, Problem 3 is equivalent to the problem of the decay of a weak 
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discontinuity. To solve the latter, we introduce the unknown curve EH (Fig. 2) which passes through the 
point E and is given by the unknown function x = r  The curve EH divides the region F:EG into the 
domains F1EH and HEG. In these domains, the corresponding solutions U-(t, x) and U+(t, x) of the system 
(1.1) are determined. On the characteristics considered, these solutions satisfy the conditions 

u - ( t , z )  = u f ( t ) ,  u+( t , x )  = 

i.e., U-(t, x) must satisfy condition (1.7) and U+(t, x) must satis~" condition (1.8). In addition, on the curve 
EH, we require satisfaction of the equality 

U- (t, x) x=~,(t) = U+ (t, x) ~=~,(t)" 

which implies that  the curve EH is a contact  line on which the gas velocities and pressures of the unknown 
flows U- ( t ,  x) and U+(t, x) coincide. For the unknown function x = e(t) ,  we formulate the Cauchy problem: 

~(t)  = 'tt+(t, X) x=~,(t) '  ~ ( l t l )  --~ X0. 

Thus, the problem of the decay of a weak discontinuity is formulated as an initial-boundary-value 
problem. It has been proven [15] that  in a certain neighborhood of the point E ,  a solution of this problem 
for the five unknown functions c-(L x), u-(t, x), c+(t, x), u+(t, x), and W(t) exists and is unique. Since the 
contact line is not a characteristic for one-dimensional isentropic flows, the gas flow in the neighborhood 

of this line is uniquely determined by speci~ing gas-dynamic parameters on it. Therefore, if the solutions 
U- ( t ,  x) and U+(t,  x) coincide on EH, they coincide in its neighborhood. Thus, in their domains of existence, 
both  flows are given by the same analytic functions U-(t, x) =_ U+(t, x), which are solutions of Problem 3 
that  are defined in a certain neighborhood of the point E.  Therefore, a solution of Kraiko's problem exists 
in the region FEG also (see Fig. 1). 

We choose a certain point on the characteristic EG (see Fig. 1) that  lies in the domain of existence 
of the solution of Kraiko's problem, and from this point we construct the t ra jectory of the corresponding 
gas particle (dot-and-dashed curve A:B1). Taking into account the first coefficients of the series that  give 
solutions of Problems 1-3, we can prove that  the entire curve A:B1 lies in the domain of existence of the 
solution of these problems. This curve is taken as the t ra jectory of motion of a new impermeable piston. 
At the points of intersection of the characteristics EF, CD, and CA, the solution has a weak discontinuity 
(the discontinuity of derivatives not lower than second-order). Hence, it is shown that  a solution of Kraiko's 
problem exists in a certain domain 01AIB102 (see Fig. 1). Thus. we have proved that  a gas mass can be 
transferred from one homogeneous state  of rest into another  by a shock-free method using an impermeable 

piston. 
D i s c u s s i o n  o f  R e s u l t s .  The  theorems proved are local in character and, therefore, cannot be used 

to determine the upper bound for the gas mass for which a solution of Kraiko's problem exists. One can 
assume that  for v = 0, this bound does not exist. However, to determine the constraint on the mass 
rigorously (for both u = 0 and v = 1 and v = 2), it is necessary to construct a global flow. For one- 
dimensional flows, approximate solutions of the equations of gas dynamics can be constructed by the method 
of characteristics. Using the local theorem proved here, one can pose initial-boundary-value problems and 
determine the arbitrariness encountered in these problems and the order of solving these problems. 

The  arbitrariness that  arises in the formulation of initial-boundary-value problems allows one to con- 
sider various optimization problems (see, e.g., [5, 7]). It  is possible that  in Kraiko's problem with a rarefaction 
wave, the specified density Pl can be reached in the fastest t ime if the solution corresponding to the initial 
state of rest is matched to a centered rarefaction wave for u = 0 and to its analogs described in Theorem 1 

f o r v = l  and 2. 
The  proposed approach can be extended to the case where at the initial and final moments,  the gas 

fills cylindrical and spherical regions (x0 = 0). In this case, the condition of no normal flow through the wall 

u o :o ,  = 0 is replaced by the symmetry  condition on the axis (p = 1) or at the center (~, = 2): u z=o = O. 
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In [4-7], flow configurations similar to those considered in the present paper were studied (in Fig. 1, the axis 
x = 0 coincides with the line O102). However, in the proof of the existence of solutions for the case x0 = 0, 
difficulties arise at the point C of the characteristic AC which lies on the symmetry axis (v -- 1) or at the 

center of symmetry (9 = 2). As shown in [17], the first derivatives of the gas-dynamic parameters (Ou/Ox) AC 

and (Op/Ox) AC leading out from the line AC go to infinity as t ~ x.  - 0, i.e., a gradient catastrophe occurs 

at the point C(t = x. ,  x = 0). This singularity at the point C arises when both the rarefaction wave and 
the compression wave focus on the axis or center of symmetry. At present, for cylindrically and spherically 
symmetric unsteady flows, there are no proven general statements concerning flow configurations or properties 
after a weak discontinuity reaches the axis (center) of symmetry. In cases (see [18], [19]) for which there are 
mathematically rigorous solutions of the problem of the focusing of a compression wave on the axis (center) 
of symmetry, a shock wave rather than a sonic characteristic is reflected from the point C. 

For Problems 1-3, there are extensions to the case of non-one-dimensional flows of a normal gas (see, 
e.g., [9] and the papers cited therein). For multidimensional flows. Problem 3 is also equivalent to the 
corresponding problem of the decav of a weak discontinuity. Therefore. the main difficulty in solving Kraiko's 
problem for the non-one-dimensional case is associated with the construction of a solution of Problem 2 in 
the class of non-one-dimensional isentropic potential flows subject to the following conditions. On the fixed 
impermeable wall at t = tt.  first, the gas density must be constant and. second, the normal and tangential 
components of the velocity vector must vanish. 
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